A50 Single Axis Digital Readout System

CONTENTS

2 SPECIFICATIONS
3 CONNECTIONS
4 INSTALLATION
4 Panel Mounting
4 Desktop Mounting
5 OPERATION
5 Setting the display
6 Using Digifind
6 Using Centerfind
7 SETUP
7 Using setup mode
8 Encoder type
8 Resolution
9 Direction
9 Radius / Diameter
10 Error compensation
11 Linear error compensation
12 Segmented error compensation
14 TROUBLESHOOTING
15 CLEANING
SPECIFICATIONS

Electrical

EMC and Low Voltage Compliance
BS EN 55022:1998 Class B
BS EN 55024:1998

Power Supply Unit (supplied)
100 - 240V (47 - 63Hz)
External switch-mode
Conforms to Low Voltage Directive

Physical

Height
72mm (2.84”)

Width
144mm (5.67”)

Depth
70mm (2.76”)

Weight
0.55kg (1.22lbs)

Environmental

Operating Temperature
0 to 45°C

Storage Temperature
-20 to 70°C

Environmental Conditions
Indoor Use, IP20 (IEC 529)

Relative Humidity
Maximum 80% for temperatures up to 31°C decreasing linearly to 33% at 45°C

Disposal
At the end of its life, the A50 system should be disposed of in a safe manner applicable to electronic goods.

⚠️ **DO NOT BURN.**

The casework is suitable for recycling. If you have any doubt about how to dispose of your unit, please return it to Newall and we will provide this service for you.

Input

One Spherosyn or Microsyn encoder

Resolutions

Spherosyn or Microsyn 10
(menu selection)
5µm (0.0002”)
10µm (0.0005”)
20µm (0.001”)
50µm (0.002”)

Microsyn 5
(menu selection)
1µm (0.00005”)
2µm (0.0001”)
5µm (0.0002”)
10µm (0.0005”)

NOTE: NEWALL MEASUREMENT SYSTEMS LTD RESERVES THE RIGHT TO CHANGE SPECIFICATIONS WITHOUT NOTICE.
CONNECTIONS

- The A50 is suitable for use only with Newall Spherosyn and Microsyn analogue encoders.
- Ensure that all cables are secured to prevent their connectors from dropping into hazardous positions when unplugged, for example the floor or coolant tray.
- Ensure that all cables are routed to prevent them from being caught on moving parts.
- Turn off the power supply before connecting the encoder, by disconnecting power supply connector.
- Ensure that the A50 is grounded to the machine before turning on the machine supply.

Encoder Input
9-way ‘D’

2.5mm Power Inlet
15 - 24Vdc ±10% @0.25A

Blanking Plug

Earth Ground Terminal
(Should be grounded to machine)

Cable Tie Anchor
(All cables should be secured)

NOTES

- DO NOT CONNECT THIS UNIT DIRECTLY TO THE MAINS SUPPLY.

If you have a Newall encoder which is not fitted with D-type connector, an adaptor cable is available.
Part No: 307-60940
Contact your supplier for details.
The A50 is supplied with a mounting kit, allowing either stand or panel-mount use.

Panel Mounting

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>YOKE</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>BRACKET</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>KNOB</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>M4 x 12 CAP HD SCREW</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>SPACE WASHER</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>M4 FLAT WASHER</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>M4 S/C SPRING WASHER</td>
<td>2</td>
</tr>
</tbody>
</table>

Diagram:
- **Yoke / Foot**
- **Knob**
- **Spring washer**
- **Flat washer**
- **Spacer**
- **Bracket**
- **Panel**
- **M4 allen screw**
OPERATION

Setting The Display

In normal operation, the keys are used as follows:

- Press \(\text{on} \) to toggle the display and keypad on and off.
- Press \(\text{mode} \) to toggle the display between \(\text{inches} \) and \(\text{millimetres} \).
- Press \(\text{mode} \) to toggle the A50 between \(\text{absolute} \) and \(\text{incremental} \) mode.

Absolute mode

In this mode, the A50 will display the position relative to an fixed datum.

Incremental mode

In this mode, the A50 can be used to display each position relative to the last position. This is also known as point-to-point use.

Setting the datum

- To zero the display at the current position:

 press \(\text{zero} \). All readings will now be relative to this zero point.

- To set the display to a known fixed point:

 Example: \(\pm 1 \, 9 \cdot 6 \, \text{ent} \) to enter the value \(-19600 \). All readings will now be relative to this fixed point.

- If you make a mistake while entering a number, pressing \(\text{ce} \) will clear the entry one character at a time.

- It is advisable to mark the Absolute Datum point physically on the machine, so as to be able to re-establish this datum after power loss. See Digifind Page 6

NOTES

Toggling the display off doesn’t turn the power off - as long as the power supply is plugged in, all settings are preserved, and the position is updated.

tip

At the beginning of each working session, set the datum in Absolute mode, then switch the A50 to Incremental mode.

By using the A50 in this way, you will be able to return the machine to its absolute datum at any time, by simply switching back to Absolute mode.

If you are using Segmented Error Compensation, see page 10 for details of the datum setting procedure.
Using Digifind

In the event that the datum is lost, either due to movement following a power failure, or after a fixed point has been entered by mistake, it can easily be re-established, using digifind.

- In order to use digifind, the absolute datum point should be marked permanently on the machine.
- Set the machine close to the datum point - to within:
 - 6.3mm (0.25”) for a Spherosyn encoder or
 - 2.5mm (0.1”) for a Microsyn encoder.
- Switch the A50 to absolute mode.
- Press \[2\]. The display will update to show the exact distance from the datum point.

Using Centrefind

Centrefind works by halving the distance displayed. It works in either absolute or incremental mode.

Example: - to find the centre of a workpiece that is 100mm wide:

- Set the tool or probe to one edge of the workpiece, and press \[0\]. The display will read \[0.000\].
- Set the tool or probe to the other edge of the workpiece. The display will read \[100.000\].
- Press \[1/2\]. The display will read \[50.000\].
- Move the tool or probe until the display reads \[0.000\]. This is the centre of the workpiece.
Using Setup Mode

Setup mode is accessible immediately after the power has been switched on, as follows:

When power is applied, the A50 will go through a brief self-test routine. The display shows the model number, then the software version number, all segments and indicators light momentarily, after which the A50 is ready for use.

- To enter Setup mode, press \(\text{SET} \uparrow\text{UP}\) anytime before the self-test finishes.
- At the end of the test, the display will read \(\text{SET} \uparrow\text{UP}\). Press any key to continue.

There are five options that can be configured:

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder type</td>
<td>Spherosyn</td>
<td>SPHEROSYN</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.005mm</td>
<td>0.005</td>
</tr>
<tr>
<td>Direction</td>
<td>1</td>
<td>DIR.</td>
</tr>
<tr>
<td>Radius / Diameter</td>
<td>Radius</td>
<td>rAD</td>
</tr>
<tr>
<td>Error compensation</td>
<td>Off</td>
<td>Err OFF</td>
</tr>
</tbody>
</table>

To cycle through the options, press \(\text{INC} \downarrow\text{DEC}\). Each option is described in detail on the following pages.

When you have finished setting all the options, press \(\text{SET} \uparrow\text{UP}\) to return the A50 to normal operating mode.
The Encoder setting must match the actual encoder in use, or the A50 will not display the measurement correctly.

Encoder Type

There are three possible settings:

- **Spherosyn**
- **Microsyn 10**
- **Microsyn 5**

- Press to cycle between the four settings.
- Press to accept the setting and move on to the next option - **Resolution**.

Resolution

The Resolution settings available will depend on the encoder, and also on the setting.

<table>
<thead>
<tr>
<th>Display</th>
<th>Spherosyn or Microsyn 10</th>
<th>Microsyn 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>in</td>
<td></td>
</tr>
<tr>
<td>1µm</td>
<td>(0.001)</td>
<td>(0.00005)</td>
</tr>
<tr>
<td>2µm</td>
<td>(0.002)</td>
<td>(0.0001)</td>
</tr>
<tr>
<td>5µm</td>
<td>(0.005)</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>10µm</td>
<td>(0.01)</td>
<td>(0.0005)</td>
</tr>
<tr>
<td>20µm</td>
<td>(0.02)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>50µm</td>
<td>(0.05)</td>
<td>(0.002)</td>
</tr>
</tbody>
</table>

- Press to cycle between the four available settings.
- Press to accept the setting and move on to the next option - **Direction**.
SETUP

Direction

The Direction setting allows you to match the A50 to the actual direction of travel of the machine.

- alternative settings:
 - d i r. i
 - d i r. 0

- Press to cycle between the two settings.
- Press to accept the setting and move on to the next option - **Radius / Diameter**

Radius / Diameter

Selecting the Diameter setting causes the A50 to display double the actual scale / machine movement

- radius: r Rd
- diameter: d l r

- Press to cycle between the two settings.
- Press to accept the setting and move on to the next option - **Error Compensation**.

NOTES

tip

The **Direction** setting is quite arbitrary. Set it to whichever makes most sense to the job.

tip

The **Diameter** setting is useful for lathes, and other turning applications, to display diameter, rather than radius.
Error Compensation

Errors can result from a number of sources including installation and machine wear. Where the degree of error increases linearly along the length of travel of the encoder, Linear Error Compensation should be applied. However, where the errors are local to a point of travel the Segmented Error correction facility could be used.

There are three possible settings:

- off
- linear error compensation
- segmented error compensation

- Press \(\text{Err on} \) to cycle between the three settings
- If you select linear compensation or segmented compensation, pressing \(\text{Err off} \) will take you to the individual settings for the compensation method chosen, described below.

Linear compensation

In this mode, a single constant correction factor for the scale can be applied to all displayed measurements. The correction factor is calculated by the user, and specified in parts per million (ppm). Values between -9999 and +9999 are allowed.

Segmented compensation

In this mode, the scale travel can be broken down into as many as 99 user-defined segments, each with its own correction factor. The correction factors are calculated by the A50, by comparison against known, user-supplied standards.

- In this mode, when power is applied, the display will read \(\text{Err off} \).
- If the machine has not been moved since the power was turned off, simply press \(\text{Err on} \), and the A50 will restore the last position recorded.
- Alternatively, set the machine close to the reference point, and press \(\text{Err on} \). The A50 will re-establish alignment with the segmented compensation.

See Pages 11 and 12 - details on using Linear and Segmented Error Compensation.
Linear Error Compensation

Calculating the correction factor

Example - to check the scale against a standard which is exactly 500mm wide:

- Set the tool or probe to one edge of the standard, and press . The display will read 0.000.
- Set the tool or probe to the other edge of the standard. Assume the A50 displays 499.800.
- Calculate the correction factor:
 \[
 \text{error} = (500.000 - 499.800) = 0.2\text{mm}
 \]
 \[
 \text{correction error factor} = \frac{0.2}{500} \times 1,000,000 = +400 \text{ ppm}
 \]

This measured value needs to be increased to match the standard, so this is a positive correction factor.

If the display had read 500.2 for the same standard, the correction factor would be -400 ppm.

Setting the correction factor

- Enter Setup mode, by pressing , and select Error Compensation.
- Select Linear Compensation, as described on page 10.
 The display will read LC 0, or a previously entered value.
- Press, 4 0 0 ent to enter a correction factor of 400 ppm (as above)
- To enter a different correction factor, press and start again.
- Press to accept the setting and move back to the first option - Encoder.
Segmented Error Compensation

Identification of correction parameters

The scale travel is broken down into a number of user-defined segments, each with its own correction factor, measured against an high-accuracy standard. The following parameters need to be identified:

Each correction point is measured with respect to the starting point - zero - which is usually set close to one end of the scale. The reference point can be set anywhere along the scale, and does not need to coincide with either the absolute datum or any of the correction points. However, it may be convenient to make the absolute datum and the reference point the same.

Setting the correction points

- Enter setup mode, by pressing and select error compensation.
- Select segmented compensation, as described on page 10.

The display will read Err SET.

Press to continue, or press to accept any previous settings and move back to the first option - Encoder Type.
Setting the correction points continued

The display will change to \(\text{SET} \rightarrow \text{ZERO} \).

1 Set the machine to the point you have chosen to be the starting point, and zero the high-accuracy standard at this point. Press \(\text{ent} \).

2 The display will change to \(\text{Go To} \).
Set the machine to the point you have chosen to be correction point 1. Press \(\text{ent} \).

3 The display will change to \(\text{Ent-Sd} \).
Enter the distance from the starting point, measured by the standard.

Example, Assume the laser measuring system displays 678.9. Then press \(6 \ 7 \ 8 \ \cdot \ 9 \ \text{ent} \) to enter a correction point position of 678.9. The A50 will calculate the correction factor, and record this against its own position measurement.

- Repeat steps 2 and 3 for each correction point.
When all correction points have been entered, Press \(\text{rec} \).

4 The display will change to \(\text{Go-To REF} \).
Set the machine to the point you have chosen as the reference point. Press \(\text{ent} \).

5 The display will return to \(\text{Err SET} \).
Press \(\text{rec} \) to accept the settings and move back to the first option - Encoder Type

Exit SetUp and begin normal operation

NOTES

This procedure must be carried out in strict sequence, and in full, to be valid. There must be no reversals in direction.

tip

Pressing \(\text{at steps 2 or 3, will display the current position relative to the starting point.} \)

tip

Do not worry about the direction of the standard measurement. eg. 678.9 and -678.9 are treated the same.

tip

Pressing \(\text{ce} \) will clear the entry one character at a time.
When all characters are deleted, pressing \(\text{ce} \) will take you back one step at a time.
Troubleshooting

Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The display is blank.</td>
<td>• Press the power supply has been switched off. • Check that the power supply is correctly connected to a working mains outlet. • Check that the power supply cables are not damaged. • Check that the power supply voltage is at least 13.5 Vdc (minimum operating limit)</td>
</tr>
<tr>
<td>The display works, but resets from time to time without any keys being pressed.</td>
<td>• This suggests either that the supply voltage is too low, or that the power supply or mains supply has an intermittent fault. • Check that the power supply voltage is 15-24 Vdc ±10%. • Check that all connections are sound.</td>
</tr>
<tr>
<td>The display works, but gives erratic readings, the last digit jitters or the measurements jump to new figures unexpectedly.</td>
<td>• This suggests that there may be a poor earth (ground) connection. • Both the A50, and the machine on which it is installed, must have proper earth (ground) connections. (see page 3) • There may be a problem with the encoder (see below).</td>
</tr>
<tr>
<td>![nO SIC or SIC FAIL appears in the display.]</td>
<td>• This indicates that the unit is not receiving a proper signal from the encoder. • Check that the encoder connections are sound.</td>
</tr>
</tbody>
</table>

continued
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom continued</th>
<th>Solutions continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>The unit will not respond to any key presses.</td>
<td>· Switch the A50 off and back on again.</td>
</tr>
</tbody>
</table>
| Readings are incorrect | · Check encoder type to ensure correct selection
 · Check error compensation factors
 · If using segmented error, verify datum position |

If the solutions suggested above do not solve your problem, contact Newall for further instruction.

CLEANING

- Disconnect the power supply from the A50 before cleaning.
- Do not use corrosive or abrasive cleaning materials.
- Do not use compressed air.
- Apply a small amount of cleaning fluid to a lint-free cloth. Use this to wipe over the case and keypad, taking care not to allow fluid into the connectors.

Tip
Providing the machine has not been moved more than: 6.3mm (0.25”) for a Spherosyn encoder or 2.5mm (0.1”) for a Microsyn encoder you will not lose the datum position by switching the power off and back on again.

Follow these instructions carefully to avoid damage to the A50.
NEWALL MEASUREMENT SYSTEMS LTD

WORLD HEADQUARTERS
Newall Measurement Systems Ltd.
Technology Gateway, Cornwall Road
South Wigston
Leicester LE18 4XH
ENGLAND
Telephone: +44 (0)116 264 2730
Facsimile: +44 (0)116 264 2731
Email: sales@newall.co.uk
Web: www.newall.co.uk

Newall Electronics, Inc.
1778 Dividend Drive
Columbus, Ohio 43228, USA
Telephone: +1 614.771.0213
Toll Free: 800.229.4376
Facsimile: +1 614.771.0219
Email: sales@newall.com
Web: www.newall.com

Newall Deutschland
Postfach 20
72117 Ammerbuch
GERMANY
Telefon: +49 (0) 7073 302908
Fax:+49 (0) 7073 302963
Email: manfred.friebe@newall.co.uk